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Abstract: Soil moisture operational product system (SMOPS) is developed by National Oceanic
and Atmospheric Administration (NOAA) to provide the real-time blended soil moisture (SM) for
numeric weather prediction and national water model applications. However, all individual satellite
SM data ingested into the current operational SMOPS are scaled to global land data assimilation
system (GLDAS) 0–10 cm SM climatology before the combination. As a result, the useful information
from the original microwave SM retrievals could be lost, and the GLDAS model errors could be
brought into the final SMOPS blended product. In this paper, we propose to scale the individual SM
retrievals to the soil moisture active passive (SMAP) data through building regression models. The
rescaled individual SM data and the SMAP observations then have similar climatology and dynamics,
which allows producing the SMOPScdr (distinguishing with the current operational SMOPSopr)
data using an equal-weight averaging approach. With respect to the in situ SM measurements, the
developed SMOPScdr is more successful tracking the surface SM status than the individual satellite
SM products with significantly decreased errors. The proposed method also preserves the climatology
of the reference SMAP data for the period when SMAP is not available, allowing us to produce a
long-term SMOPScdr data product.

Keywords: SMOPS; soil moisture; bias-correction

1. Introduction

Surface soil moisture (SM) is a key parameter to control terrestrial water cycle, energy
and carbon exchanges between land and the atmosphere through affecting the partitioning
of incoming radiation into latent and sensible heat fluxes [1–3]. Benefiting from microwave
remote-sensing techniques, there have been a number of satellite SM data products devel-
oped in the past decades, primarily including the advanced microwave scanning radiometer
(AMSR)-earth observing system (AMSR-E), AMSR-2, WindSat, soil moisture and ocean
salinity (SMOS), and soil moisture active passive (SMAP), as well as the advanced scat-
terometer (ASCAT) from the meteorological operational platform (MetOp)-A (ASCATA),
MetOp-B (ASCATA) and MetOp-C (ASCATC) mission series [1,4–8]. However, these indi-
vidual satellite SM observations not only lack complete coverages in time and space but also
vary significantly in the archived formats, data accuracy and climatological characteristics.

To address those discrepancies, the soil moisture operational product system (SMOPS)
is operationally produced by National Oceanic and Atmospheric Administration (NOAA)
to offer the real-time blended satellite SM observations [9–14]. As NOAA requires high-
quality satellite SM observations with short latency, the SMOPS combines all available
individual SM observations within the numerical weather prediction (NWP) 6 h cut-off
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time and 24 h windows to generate the 6-hourly and daily blended products. Considering
the operational users’ feedback, the SMOPS was updated twice by removing old sensors,
adding new satellite platforms and improving retrieval algorithms [13,14]. The current
SMOPS version 3.0 combines the SM retrievals from ASCATA, ASCATB, AMSR-2, SMOS
and SMAP [14]. Due to the different spatial resolution, polarization, frequency, revisit time
and spatiotemporal coverage, the SM retrievals from different sensors must be processed
toward a consistent mergeable dataset with the same climatology [15]. As a result, all
individual satellite SM data products are remapped to SMOPS 0.25◦ latitude–longitude
grids and then scaled to the 0–10 cm SM climatology of global land data assimilation system
(GLDAS) V2.1-Noah model using the cumulative distribution function (CDF) matching
method [9,10,13]. However, the useful information from the original microwave satellite
observation could have been lost after scaling to model simulations [16,17]. Considering
the requirements of model-free satellite SM observations are growing, we propose a new
method in this paper for the SMOPS blended data product. Allowing the product features
to purely depend on readily available microwave SM observations, the method is feasible
for operational implementation without requiring ancillary datasets. For distinction with
the current operational SMOPS product (SMOPSopr), the new blended product is expected
to have climate data record quality and will be called SMOPScdr. Details of the new method
and results are presented in this paper.

2. Data and Method
2.1. Satellite SM Data Products

The original daily ASCATA and SMOS level-2 SM data are retrieved from 1 January
2012 to 30 August 2021, while the initial availability periods for AMSR-2, ASCATB and
SMAP products are 11 September 2012, 1 January 2013 and 1 April 2015, respectively
(Table 1).

Table 1. CONUS domain-averaged RMSE, ubRMSE and correlation coefficients (r) for SMOPScdr
and the original individual satellite soil moisture data products compared with SCAN measurements,
as well as the corresponding statistical periods.

ubRMSE (m3/m3) RMSE (m3/m3) r Period

SMOS 0.099 0.132 0.379 01/01/2012–08/30/2021
ASMR-2 0.065 0.139 0.158 09/11/2012–08/30/2021
ASCATA 0.099 0.132 0.284 01/01/2012–08/30/2021
ASCATB 0.105 0.138 0.249 01/01/2013–08/30/2021

SMAP 0.061 0.105 0.559 04/01/2015–08/30/2021
SMOPScdr 0.057 0.101 0.440 01/01/2012–08/30/2021
SMOPScdr 0.057 0.102 0.315 01/01/2012–03/31/2015
SMOPScdr 0.058 0.099 0.506 04/01/2015–08/30/2021

ASCAT sensor operating in C-band (5.255 GHz) uses three-radar antenna beams to
illuminate a continuous ground swath at three different azimuth angles [7]. The latest
version ASCATA and ASCATB SM retrievals are obtained from the European Organization
for the Exploitation of Meteorological Satellites. The AMSR-2 onboard GCOM-W1 satellite
uses C-band (6.9 GHz) to estimate the surface SM status from about 700 km above the earth.
The AMSR-2 version 1.0 SM data used in this paper are obtained from NOAA-National
Environmental Satellite, Data, and Information Service (NESDIS). The SMOS and SMAP
are specifically designed to sense SM based on L-band (1.42 GHz) observations [1,6]. The
SMAP V5.0 is available from National Snow and Ice Data Center, while the real-time SMOS
data V6.2 are distributed by the European Space Agency.

The current operational SMOPSopr data are also used in this paper to evaluate the
developed SMOPScdr data. Given the same input individual satellite SM retrievals, the
differences of in situ observations-based assessments are based only on the different de-
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velopment algorithm. The SMOPSopr V3.0 data from 1 April 2015 to 30 August 2021 are
obtained from the NOAA-NESDIS.

2.2. In Situ Observations

Comprehensive assessments on the developed SMOPScdr in this paper were con-
ducted with in situ SM measurements from Soil Climate Analysis Network (SCAN) and
SMAP Validation (SMAPVAL) networks. The SCAN was specifically designed by the
U.S. Department of Agriculture (USDA) to enable in situ observations focusing on the
agricultural areas of the U.S. [18]. Hourly SCAN SM observations from 1 January 2012 to
30 August 2021 were reprocessed as daily time step to match the developed SMOPScdr.
After quality control, in situ soil moisture measurements from 131 SCAN stations across the
contiguous United States (CONUS) domain were selected for SMOPScdr quality evaluation.

SMAPVAL in situ SM data are from USDA-Agricultural Research Service (ARS) net-
works within the CONUS and the OzNet hydrological monitoring network in Australia.
The USDA-ARS covers 5 watersheds, including the Walnut Gulch watershed in Arizona, the
Little Washita and Fort Cobb watershed in Oklahoma, the Little River watershed in Georgia,
the St. Joseph’s experimental watershed and the South Fork experimental watershed in
Iowa [19–21]. The Australian OzNet networks consist of the regional Murrumbidgee sites
along with focused experimental areas in Yanco, Kyeamba, and Adelong Catchments [22].
Hourly USDA-ARS SM observations from 1 January 2012 to 31 December 2016 and hourly
OzNet SM observations from 1 April 2015 to 31 December 2016 were reprocessed as daily
time step to match the developed SMOPScdr. After quality control, SMAPVAL has approxi-
mately 200 stations selected to validate SMOPScdr.

2.3. Development of SMOPScdr

Previous studies have reported that the SMAP product has better performance than
other available individual SM retrievals [23–25]. The NASA 0.25◦ SMAP data over the
2015–2021 time period are thus used as a reference in this paper. Considering the original
ASCAT measurements offer the relative SM values from 0% to 100% to present moisture
conditions [7], they are firstly converted to volumetric SM using a soil porosity map. All
individual satellite SM data products are resampled to SMAP 0.25◦ latitude–longitude
grids and then scaled to SMAP climatology and dynamics through developing multiple
linear regression models for each grid cell over the global domain (Figure 1). The specific
regression model parameters, including slop a and intercept b, are obtained to represent
the relationships between the corresponding individual SM data product and the SMAP
observations. One must bear in mind that the linear regression models are based on
SMAP and other individual sensor SM products during the 1 April 2015–30 August 2021
time period when SMAP is available. The linear regression models are then applied to
the entire available time period of each input individual satellite SM product. Given all
individual satellite SM products are completely scaled to SMAP dynamics and climatology,
the processed data and SMAP should have an equivalent performance, which allows
combining them to generate the blended SMOPScdr soil moisture data using an equal-
weight averaging approach. It can be found that the spatial patterns for the developed
SMOPScdr are very reasonable over the global domain (Figure 1).

2.4. Validation Strategy

Based on the in situ SM observations from the SMAPVAL and SCAN networks, all
individual satellite SM retrievals and the developed SMOPScdr data are evaluated by three
widely used metrics, including correlation coefficient (r), root mean square error (RMSE)
and unbiased RMSE (ubRMSE). The starting dates for the original SMAP, SMOS, AMSR-2,
ASCATB and ASCATA are 1 April 2015, 1 January 2012, 11 September 2012, 1 January 2013
and 1 January 2012, while the ending dates are 31 December 2016 and 30 August 2021 for
SMAPVAL and SCAN-based evaluations, respectively (Tables 1 and 2). Specifically, the
developed SMOPScdr data are not only validated during the SMAP time period (after



Remote Sens. 2022, 14, 1700 4 of 10

1 April 2015) through intercomparing with SMAP but also focused on the period before
SMAP is available to highlight the regression model validity. The SMOPScdr is matched
up with the SMAPVAL observations scaled up from the SMAPVAL sites, and then the
watershed-averaged comparison statistics are used to evaluate the SMOPScdr performance.
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Figure 1. Process procedure of generating the 0.25◦ blended SMOPScdr soil moisture data product
using ASCATA, ASCATB, SMOS, SMAP and AMSR-2 SM retrievals.

Table 2. With respect to the SMAPVAL soil moisture observations, statistics for studying domain-
averaged RMSE, ubRMSE and correlation coefficients (r), as well as the corresponding statistical
periods for the original individual satellite retrievals and the developed SMOPScdr data product.

ubRMSE (m3/m3) RMSE (m3/m3) r Period

SMOS 0.071 0.091 0.436 01/01/2012–12/31/2016
ASMR-2 0.045 0.081 0.260 09/11/2012–12/31/2016
ASCATA 0.084 0.112 0.378 01/01/2012–12/31/2016
ASCATB 0.082 0.098 0.344 01/01/2013–12/31/2016

SMAP 0.052 0.074 0.540 04/01/2015–12/31/2016
SMOPScdr 0.038 0.071 0.440 01/01/2012–12/31/2016
SMOPScdr 0.037 0.076 0.324 01/01/2012–03/31/2015
SMOPScdr 0.038 0.064 0.447 04/01/2015–12/31/2016

3. Results

Before ingested into SMOPScdr, all individual microwave satellite soil moisture data
products are scaled to the SMAP climatology and dynamics. The daily SMOPScdr is thus
first compared with the daily SMAP data. In Figure 2, the higher sample density area in
warm color closer to the black 1:1 line indicates that the SMOPScdr and SMAP matches
better. Resulting from the new method, seasonal regression curves overlapping with the
ideal 1:1 line indicate SMOPScdr agrees well with the SMAP observations (Figure 2). The
global domain-averaged correlation coefficients (r) between the daily SMAP and SMOPScdr
reach to 0.975, 0.973, 0.967 and 0.973 for Winter (D-J-F), Spring (M-A-M), Summer (J-J-A)
and Autumn (S-O-N), respectively. The strong agreements imply that all individual satellite
SM observations ingested into SMOPScdr were successfully scaled to the SMAP climatology
and dynamics, allowing for reasonably combining them into the blended SMOPScdr data
using the equal-weight averaging approach.
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Figure 2. The daily SMAP versus the daily SMOPScdr soil moisture data over the global domain
from 1 April 2015 to 30 August 2021: (a) Winter, December–January–February; (b) Spring, March–
April–May; (c) Summer, June–July–August; and (d) Autumn, September–October–November. The
black diagonal line represents they are perfectly matched. The red dashed line from the low-left to
the upper-right is their linear regression curve. The color bar indicates sample density.

With respect to the quality-controlled SCAN measurements, SMOPScdr is assessed
by comparing with the original individual satellite SM data products. Figure 3 shows
differences in SCAN observations-based ubRMSE during the 1 April 2015–30 August
2021 time period with sites in blue color highlighting better performance. Relative to the
SMAP, the SMOPScdr presents an equally good performance in the mid-west CONUS,
while showing lower ubRMSE values in the east areas. SMOPScdr has overwhelming
advantages in comparison with the original SMOS and ASCATA SM data products. Com-
pared to AMSR-2, SMOPScdr exhibits slight improvements in the mid-west CONUS. The
CONUS domain-averaged ubRMSEs for SMAP, SMOS, AMSR-2, ASCATA and ASCATB
are 0.061 m3/m3, 0.099 m3/m3, 0.065 m3/m3, 0.099 m3/m3 and 0.105 m3/m3, which
are significantly decreased by 5.17%, 70.69%, 12.07%, 70.69% and 81.03% by SMOPScdr
(0.058 m3/m3), respectively (Table 1). The good performance is well mirrored during the
1 January 2012–31 March 2015 time period with SMOPScdr yielding a reasonable CONUS
domain-averaged ubRMSE value (0.057 m3/m3).
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Figure 3. Differences in SCAN observations-based ubRMSE during 1 April 2015–30 August 2021
time period: (a) SMOPScdr minus SMAP, (b) SMOPScdr minus SMOS, (c) SMOPScdr minus AMSR-2,
(d) SMOPScdr minus ASCATA. Patterns for ASCATA and ASCATB are very similar.

Further validations are conducted with RMSE and correlation coefficients. The CONUS
domain-averaged RMSEs for the original SMAP, SMOS, AMSR-2, ASCATA and ASCATB
are 0.105 m3/m3, 0.132 m3/m3, 0.139 m3/m3, 0.132 m3/m3 and 0.138 m3/m3, which
are significantly decreased by 6.06%, 33.33%, 40.40%, 33.33% and 39.39% by SMOPScdr
(0.099 m3/m3) over the 1 April 2015–30 August 2021 time period, respectively (Table 1).
The SMOPScdr is more successfully in tracking surface SM dynamic trends in comparison
with SMOS, AMSR-2, ASCATA and ASCATB but shows a weaker consistency with SCAN
observation than the SMAP. It is worth to note that SMOPScdr performs reasonably well
before and/or after the time period when SMAP is available, which means that the pro-
posed method preserves the “memory” of the information from SMAP observations and
thus allows us to produce a longer-term SMOPScdr with respect to the SMAP dynamics
and climatology.

Complementary assessments on the new blended method are conducted with SMAP-
VAL SM observations. With respect to the SMAPVAL soil moisture measurements, the
ubRMSEs for SMOPScdr span from 0.03 m3/m3 to 0.047 m3/m3 (Figure 4). Intercompar-
isons between SMOPScdr and SMAP are implemented by long-term SMAPVAL data from
1 January 2012 to 31 December 2016 over the five watershed regions to specifically highlight
the disadvantages and advantages of the new blended method. Before the SMAP data are
available, the SMOPScdr can successfully track soil moisture with respect to SMAPVAL and
has a reasonable performance benefiting from SMAP data after 1 April 2015 (Figure 4). The
global domain-averaged SMAPVAL-based ubRMSE values for SMOS, AMSR-2, ASCATA
and ASCATB are 0.071 m3/m3, 0.045 m3/m3, 0.084 m3/m3 and 0.082 m3/m3, which can be
significantly reduced by 86.84%, 18.42%, 121.05% and 115.79% by SMOPScdr (0.038 m3/m3),
respectively. Compared to the SMAP (0.052 m3/m3), the SMOPScdr has a higher accuracy
with the ubRMSE reduced by 36.84% (Table 2).
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Figure 4. The watershed-averaged daily SMOPScdr and SMAP data versus daily SMAPVAL soil
moisture measurements: A1—Walnut Gulch watershed, A2—Little Washita and Fort Cobb water-
shed, A3—Little River watershed, A4—St. Joseph’s experimental watershed and A5—South Fork
experimental watershed. The SMAP is from 1 April 2015 to 31 December 2016, while SMOPScdr
starts from 1 January 2012. The ubRMSEs in blue and red colors for SMOPScdr indicate the time
period before and after 1 April 2015 when SMAP becomes available. The ubRMSEs in red color for
SMAP indicate the assessment over 1 April 2015 to 31 December 2016 period.

Benefiting from the new method, SMOPScdr yields RMSE values compatible with
those for SMAP within and beyond the time period when SMAP data are available (Table 2).
Based on correlation coefficient, the SMOPScdr (r = 0.440) is more consistent with SMAP-
VAL soil moisture observations than SMOS (0.436), AMSR-2 (0.260), ASCATA (0.378) and
ASCATB (0.344), whereas it exhibits lower correlations than SMAP (0.540), resulting from,
probably, the lower consistencies of the individual sensor retrievals with the SMAPVAL
data. Correlation coefficient for SMOPScdr is 0.447 during the SMAP time period; yet, it
drops sharply to 0.324 when SMAP is unavailable (Table 2).

4. Discussion and Conclusions

Blended satellite SM data have better consistency and more complete coverage in
space and time. Before ingested into the blended product, the individual SM retrievals
need to be scaled to a benchmark, as their characteristics vary significantly from each other.
We, thus, propose to scale the available SM observations from the multiple single sensors
to the currently most accurate satellite retrievals through building the corresponding
regression models. The SMAP is used as a reference in this paper, but it is replaceable
once another satellite SM product is proven to have higher accuracy in the future. The
developed SMOPScdr combines the observations from ASCATA, ASCATB, AMSR-2, SMOS
and SMAP in this paper, but the simple processing procedure and equal-weight averaging
approach allow combining many more individual satellite SM products (e.g., ASCATC)
into the SMOPScdr through building the corresponding regression models. Based on the
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validation results obtained in this paper, AMSR-2 yields the lowest agreement with in situ
observations, resulting in SMOPScdr showing lower correlation coefficients than SMAP.
It is, thus, expected to further improve the validation statistics for SMOPScdr through
refining the AMSR-2 retrieval algorithm in the near future.

The motivation of this paper is to refine the current operational SMOPSopr product
at NOAA-NESDIS. Figure 5 shows the differences in SCAN-based unRMSEs between the
developed SMOPScdr and the current SMOPSopr with sites in blue (red) color indicating
SMOPScdr presents a better (worse) performance. With respect to the SCAN SM measure-
ments, SMOPScdr shows a better performance than SMOPSopr across the CONUS domain.
Specifically, the CONUS domain-averaged ubRMSE value for SMOPSopr is 0.065 m3/m3

over the 1 April 2015–30 August 2021 time period, which can be significantly reduced by
12.24% by SMOPScdr (0.058 m3/m3). The only differences between SMOPSopr and SMOP-
Scdr are their development technique, highlighting the advantages of the new methods
proposed in this paper.
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The results of this study indicate that the developed SMOPScdr has a better perfor-
mance than the ingested individual satellite SM data products. With respect to the SCAN
SM measurements, SMOPScdr is more successful at tracking surface SM status with sig-
nificantly smaller ubRMSE and RMSE values and larger correlation coefficient. The good
performance of SMOPScdr is well mirrored in the further validation using the scaled-up
in situ data from the USDA-ARS and the Australian OzNet SM networks. The developed
SMOPScdr performs more reasonable not only during the SMAP time period but also
during the period before the SMAP is available. It suggests that the proposed method
preserves the information from SMAP observations and, thus, allows us to produce a
longer-term SMOPScdr dataset based on the SMAP dynamics and climatology.
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